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Abstract
The rotational diffusion equation for a dipole in the presence of an oscillating
field is solved by expansion of the orientational distribution function in terms
of Legendre polynomials and harmonics. The nonlinear response of the
average dipole moment is studied as a function of field strength and frequency.
Outside the linear regime the in-phase and out-of-phase response as functions of
frequency do not satisfy Kramers–Kronig relations. A comparison is made with
the nonlinear response calculated from approximate macroscopic relaxation
equations proposed by Shliomis and by Martsenyuk et al. The response of
a macroscopic system of interacting dipoles is calculated in the mean-field
approximation for a spherical sample.

1. Introduction

The linear response of a dipolar system to an applied oscillating field was calculated by
Debye [1] from a solution of the rotational diffusion equation for the orientational distribution
function valid to first order in the field. In a strong oscillatory field it is necessary to calculate
the nonlinear response of the system. Coffey and Paranjape [2] and Raikher and Stepanov [3]
have evaluated the response up to cubic terms in the field. Morita and Watanabe [4, 5] proposed
a general formal perturbation theory of the nonlinear response. Raikher et al [6] solved the
equation for the orientational distribution function by expansion in Legendre polynomials and
harmonics. In the following we use the same method. A more intricate solution in terms
of matrix continued fractions was obtained recently by Déjardin and Kalmykov [7]. They
suggested that their solution is more exact than the more direct solution of the linear system
of equations obtained by truncation. Actually, numerical evaluation of the matrix continued
fraction also involves truncation. Numerically both methods work equally well. The first
method is more transparent, and both methods are equally exact. An extension of the theory
to include the effect of polarizability [8] was reviewed recently by Déjardin et al [9].
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In the following we discuss the solution of the rotational diffusion equation, and study the
first-harmonic response and absorption in some detail. Raikher et al [6] restricted attention
to the response of the order parameter and the corresponding birefringence. We compare our
results with the approximate macroscopic description of Martsenyuk et al [10], and find that
this description performs quite well.

We also compare our results with a calculation of first-harmonic response and absorption
on the basis of the Shliomis macroscopic relaxation equation [11]. The earlier treatment of
this problem by Rosensweig [12] involved an approximation.

For the Shliomis relaxation equation the nonlinear response is remarkably simple. The
absorption resonance, as a function of frequency, is not shifted from the linear case, and is
only reduced by a factor which depends on the field strength. The amplitude of oscillation
is a single-valued function of frequency, unlike the response to a rotating field, where the
Shliomis relaxation equation predicts a multivalued response [13, 14], typical of the response
of a nonlinear oscillator [15, 16].

For the rotational diffusion equation the response is more complicated than for the
Shliomis relaxation equation. With increasing field strength the absorption resonance is shifted
significantly to higher frequency,and also becomes broader [7]. On the other hand, the response
remains single-valued. Also, there is no transition to chaos, as is observed generically for
nonlinear oscillators [16–20].

The frequency dependence of the response has a further remarkable feature. As is well
known, the frequency-dependent susceptibility characterizing the linear response is a complex
function of frequency, with real and imaginary parts related by Kramers–Kronig relations [21]
as a consequence of causality. We find by explicit calculation that the complex function
characterizing the nonlinear response does not have this feature. It is known in the context of
quantum optics that Kramers–Kronig relations may be violated in nonlinear situations [22, 23].

We do not consider all complications of real ferrofluids; thus we assume that the particles
have only a permanent dipole moment, and we neglect Néel relaxation. Also we assume
the suspension to be monodisperse. For dilute suspensions polydispersity can be taken into
account by an average of our results for the magnetization over the size distribution. The
idealized model system can be studied in a computer simulation.

Finally, we show that the theory developed for the dilute system without dipolar
interactions can be extended to dense systems by a proper choice of macroscopic geometry,
provided that the acting local field can be approximated by the Lorentz local field. It follows
from Maxwell’s equations of electrostatics that for a spherical sample the latter is identical
with the applied field.

All our considerations apply equally to electric and magnetic dipoles. For clarity we use
language and notation corresponding to the magnetic case.

2. Dipoles in an oscillating field

We consider a system of non-interacting dipoles performing orientational Brownian motion
in the presence of an oscillating field. We shall consider magnetic dipoles of dipole moment
µ = mu, where u is a unit vector, in the presence of the magnetic field H(t) = H0ez cos ωt
oscillating in the z-direction at frequency ω. Our considerations apply equally well to electric
dipoles in an oscillating electrical field. The distribution function of orientations f (u, t) is
assumed to satisfy the Smoluchowski equation

∂ f

∂ t
= DRL · [L f + β(Lε) f ], (2.1)
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where DR is the rotational diffusion coefficient, and L is the rotation operator

L = u × ∂

∂u
. (2.2)

The potential energy of a dipole in the field H(t) is

ε(u, t) = −m H0 cos θ cos ωt, (2.3)

where cos θ = u · ez . The periodic solution of equation (2.1) will have the form f (θ, t), so
that the equation can be simplified to

∂ f

∂ t
= DR

[
1

sin θ

∂

∂θ

(
sin θ

∂ f

∂θ
+ ξ cos ωt sin2 θ f

)]
, (2.4)

with the abbreviation ξ = βm H0. In terms of the variable x = cos θ this becomes

∂ f

∂ t
= DR

∂

∂x

[
(1 − x2)

∂ f

∂x
− ξ cos ωt (1 − x2) f

]
. (2.5)

It is convenient to normalize to∫ 1

−1
f (x, t) dx = 1. (2.6)

We solve equation (2.5) by expansion in Legendre polynomials and harmonics

f (x, t) = 1
2 +

∞∑
�=1

[ ∞∑
n=0

A�n cos nωt +
∞∑

n=1

B�n sin nωt

]
P�(x). (2.7)

Substituting the expansion into equation (2.5) we find the coupled set of equations

−nωA�n = DR

[
−�(� + 1)B�n +

1

2
ξ

(
�(� + 1)

2� − 1
(B�−1,n−1 + B�−1,n+1)

− �(� + 1)

2� + 3
(B�+1,n−1 + B�+1,n+1)

)]
,

nωB�n = DR

[
−�(� + 1)A�n +

1

2
ξ

(
�(� + 1)

2� − 1
((1 + δn1)A�−1,n−1 + A�−1,n+1)

− �(� + 1)

2� + 3
((1 + δn1)A�+1,n−1 + A�+1,n+1)

)]
(2.8)

for n � 1, � � 1 with the convention

A00 = 1
2 , A0n = 0,

B�0 = 0, B0n = 0.
(2.9)

In addition, for � � 1

A�0 = 1

2
ξ

[
1

2� − 1
A�−1,1 − 1

2� + 3
A�+1,1

]
. (2.10)

The coefficient A00 occurs as an inhomogeneous term in the equation for B11. For given (ξ, ω)

the equations (2.8) and (2.10) can be solved by truncation at sufficiently large � and n. One
finds that the higher-order coefficients tend to zero rapidly. The equations have a symmetry
which shows that

A�n = 0 for � + n odd,

B�n = 0 for � + n odd.
(2.11)

We write the magnetization as

M(t) = nm F(t), (2.12)
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where n is the number density, and F(t) is the moment

F(t) =
∫ 1

−1
x f (x, t) dx . (2.13)

For brevity we shall call F(t) the magnetization. From equation (2.7) we find

F(t) = 2
3

∞∑
n=1

[A1n cos nωt + B1n sin nωt]. (2.14)

It follows from equation (2.11) that only harmonics with n odd contribute. A second moment
of interest is the order parameter

S(t) =
∫ 1

−1
P2(x) f (x, t) dx . (2.15)

From equation (2.7) we find

S(t) = 2
5

[ ∞∑
n=0

A2n cos nωt +
∞∑

n=1

B2n sin nωt

]
. (2.16)

It follows from equation (2.11) that only harmonics with n even contribute.

3. Limiting cases and the macroscopic relaxation equation

It is of interest to compare the exact solution obtained above with the approximate solutions
obtained in the limits of low frequency and weak field. We can also compare the
exact solution for the magnetization with that obtained from the so-called effective field
approximation [10, 24].

In the limit of low frequency the solution will be well approximated by a quasi-equilibrium
solution, corresponding to thermal equilibrium in the instantaneous field. We call this the
adiabatic approximation. The corresponding distribution function is

fad(x, t) = exp[ξ cos ωtx]/Z(ξ cos ωt) (3.1)

with the normalization factor

Z(ξ) = 2 sinh ξ

ξ
. (3.2)

For a weak field equation (2.5) can be solved by perturbation expansion in powers of ξ .
Thus we put

f (x, t) = f0 + f1 + f2 + · · · , (3.3)

where the subscript denotes the order in ξ . From equation (2.5) one finds

f0 = 1
2 ,

f1(x, t) = 1
2 ξ cos α cos(ωt − α)x,

(3.4)

with phase angle

α(ω) = arctan

(
ω

2DR

)
. (3.5)

The second-order term is

f2(x, t) = 1
12ξ2 cos α[cos α + cos α2 cos(2ωt − α − α2)]P2(x) (3.6)

with phase angle

α2(ω) = arctan

(
ω

3DR

)
. (3.7)
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It turns out that equation (3.4) provides a good approximation at high frequency. At high
frequency the field is effectively weak, since the dipoles cannot follow the field.

In a constant field ξ the time-independent equilibrium distribution is

feq(x) = exp(ξx)/Z(ξ). (3.8)

The corresponding equilibrium magnetization is

Feq(ξ) = L(ξ), (3.9)

where L(ξ) is the Langevin function

L(ξ) = coth ξ − 1

ξ
. (3.10)

In the effective field approximation [10, 24] it is assumed that the distribution has the
equilibrium form

fe(x, t) = exp[ξe(t)x]/Z(ξe(t)) (3.11)

at all times with field ξe(t) determined from the magnetization F(t) according to equation (3.9)

F(t) = L(ξe(t)). (3.12)

The magnetization itself is assumed to follow from a macroscopic relaxation equation. The
latter is derived as a moment equation of equation (2.5), on the assumption that the distribution
has the form of equation (3.11). We denote the approximate magnetization by FM (t). It
satisfies the macroscopic equation

dFM

dt
= −2DR

[
FM (t) − FM (t)

ξeM (t)
ξ cos ωt

]
. (3.13)

As we shall see, the macroscopic relaxation equation provides quite a good approximation to
the actual magnetization.

As an example we consider ξ = 20, ω = 9.588DR. In figure 1 we plot the exact
distribution function, as a function of x = cos θ and t , as found from equations (2.7)–
(2.10). In figure 2 we plot the corresponding magnetization F(t), as well as the solution
FM (t) of the macroscopic relaxation equation (3.13). This shows that the latter describes the
behaviour of the magnetization quite well. The exact magnetization passes through zero at
time t0 = 0.431T , where T = 2π/ω is the period. The approximate magnetization FM (t)
passes through zero at time t0M = 0.439T . The exact magnetization is maximal at time
tx = 0.167T , whereas the approximate magnetization is maximal at time txM = 0.166T .
The value at maximum is F(tx) = 0.894, whereas FM (txM ) = 0.901. The difference is
more pronounced when expressed in terms of the field. In figure 3 we plot the field ξe(t)
accompanying the exact solution F(t) according to equation (3.12), as well as the field ξeM (t)
corresponding to the solution FM (t) of equation (3.13). At the maximum ξe(tx) = 9.452,
whereas ξeM (txM ) = 10.125.

In figure 4 we plot the exact distribution f (x, t0) at time t0, as well as the flat distribution
fe(x, t0) = 1

2 found from ξe(t0) = 0, and the distribution feM (x, t0) found from ξeM(t0). This
shows that at time t0 the approximation of equation (3.11) to the distribution function is quite
poor, whether calculated from ξe(t0), or from ξeM (t0). The exact distribution is far from flat
when the magnetization vanishes.

In figure 5 we plot the order parameter S(t) as a function of time, again for ξ = 20, ω =
9.588DR. In principle the order parameter can take values between − 1

2 and 1. In our example
the order parameter turns negative when the magnetization passes through zero and tends
to unity when the absolute value of the magnetization is maximal. We also plot the order
parameter SM (t) that follows from the effective field approximation of Martsenyuk et al [10].
This approximate order parameter remains positive, exhibiting a defect of the approximation.
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Figure 1. Plot of the distribution function f (x, t) for field ξ = 20 and frequency ω = 9.588DR .
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Figure 2. Plot of dimensionless magnetization F(t) for field ξ = 20 and frequency ω = 9.588DR

(full curve), compared with the approximate value FM (t) calculated from the macroscopic
relaxation equation (3.13).
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Figure 3. Plot of dimensionless field ξe(t) for field ξ = 20 and frequency ω = 9.588DR (full
curve), compared with the approximate value ξeM (t) calculated from the macroscopic relaxation
equation (3.13).

4. First-harmonic response and absorption

A quantity of prime interest in the nonlinear response of the magnetization is the amplitude of
the first harmonic, swinging in phase with the applied oscillating field. This is characterized
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Figure 4. Plot of the distribution function f (x, t0) for field ξ = 20 and frequency ω = 9.588DR

at time t0 defined by F(t0) = 0 (full curve), compared with the flat distribution fe(x, t0) = 1
2

(dashed curve), and the distribution feM (x, t0) corresponding to the effective field approximation
(dotted curve).
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Figure 5. Plot of the order parameter S(t) for field ξ = 20 and frequency ω = 9.588DR (full
curve), compared with SM (t), the order parameter found from the effective field approximation.

by the first-harmonic response, defined by

P(ξ, ω) = ξω

∫ T

0
F(t) cos ωt dt . (4.1)

We note that P(ξ, ω) equals −2πβ times the time average of the mean potential energy of a
dipole in the oscillating field. From equation (2.14) we find the exact value

P(ξ, ω) = 2π

3
ξ A11. (4.2)

To first order in ξ the magnetization following from equation (3.4) is given by

Fw(t) = 1
3ξ cos α cos(ωt − α). (4.3)

To this order we find from equation (4.1)

Pw(ξ, ω) = π

3
ξ2 cos2 α = π

3
ξ2 4

4 + ω2τ 2
R

, (4.4)

where τR = 1/DR is a relaxation time.
In the zero-frequency limit one finds from equation (3.1)

Fad(t) = L(ξ cos ωt). (4.5)

Hence one finds for the first-harmonic response at zero frequency

P(ξ, 0) = ξ

∫ 2π

0
L(ξ cos τ ) cos τ dτ. (4.6)
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Figure 6. Plot of the function 3P(ξ, 0)/(πξ2) as a function of ξ (full curve), compared with
Rosensweig’s result 3L(ξ)/ξ (dashed curve).

For small ξ this reduces to Pw(ξ, 0) = πξ2/3. In figure 6 we plot 3P(ξ, 0)/(πξ2) as a function
of ξ .

A second quantity of interest is the absorption, defined as the work done by the field in a
period T = 2π/ω. In dimensionless units

Q(ξ, ω) = ξ

∫ T

0

dF

dt
cos ωt dt . (4.7)

It follows from equation (2.14) that the exact absorption is

Q(ξ, ω) = 2π

3
ξ B11. (4.8)

To second order in ξ the absorption is

Qw(ξ, ω) = π

3
ξ2 sin α cos α = π

3
ξ2 2ωτR

4 + ω2τ 2
R

. (4.9)

We can compare this with the absorption QM (ξ, ω) calculated from the approximate
magnetization FM (t).

The absorption Qw(ξ, ω) calculated from the linearized theory shows a resonance when
plotted as a function of log10 ωτR with maximum at ωmw = 2/τR , corresponding to Debye
relaxation time τD = 1/2DR . In figure 7 we plot the reduced first-harmonic response
P(ξ, ω)/P(ξ, 0) as a function of log10 ωτR for ξ = 20, as well as the reduced absorption
Q(ξ, ω)/P(ξ, 0). We compare with the quantities Pw(ξ, ω)/Pw(ξ, 0) and Qw(ξ, ω)/Pw(ξ, 0)

valid in the weak field limit. The latter are related by Kramers–Kronig relations. The plot shows
a significant qualitative difference for a strong field. We also plot the corresponding quantities
calculated from the macroscopic equation. The approximate theory performs quite well. At the
maximum at ωm = 9.588DR the exact value is Q(20, ωm) = 56.096, whereas the approximate
value is QM(20, ωm) = 57.078. At high frequency both curves tend to the expression for a
weak field, equation (4.9). This expression has its maximum Qw(20, 2DR) = 209.44 at
ω = 2DR .

It follows from the above example that at high field the frequency ωm of maximum
absorption is significantly larger than the Debye value ωmw = 2DR . At the same time the
absorption Qm = Q(ξ, ωm) at the maximum is strongly reduced from the value Qmw =
Qw(ξ, ωmw) = πξ2/6 predicted by equation (4.9). In figure 8 we plot the ratios ωmw/ωm and
Qm/Qmw as functions of field strength ξ . In the linear theory the location of the maximum is
used to find the Debye relaxation time, and the value at the maximum is used to find the static
susceptibility [25]. These characteristic quantities can be used to test the nonlinear theory
experimentally.
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Figure 7. Plot of the reduced functions P(ξ, ω)/P(ξ, 0) and Q(ξ,ω)/P(ξ, 0) as functions
of log10 ωτR for ξ = 20 (full curves), compared with the quantities Pw(ξ, ω)/Pw(ξ, 0) and
Qw(ξ, ω)/Pw(ξ, 0) valid in the weak field limit (short dashed curves), as well as with the quantities
PM (ξ,ω)/P(ξ, 0) and QM (ξ, ω)/P(ξ, 0) calculated from the effective field approximation (long
dashed curves).
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Figure 8. Plot of the ratios ωmw/ωm (dashed curve) and Qm/Qmw (full curve) as functions of field
strength ξ .

The response of the system for a weak field is characterized by the frequency-dependent
susceptibility

χ(ω) = χ ′(ω) + iχ ′′(ω) (4.10)

with real and imaginary parts

χ ′(ω) = 1

3
nm2β

1

1 + ω2τ 2
D

, χ ′′(ω) = 1

3
nm2β

ωτD

1 + ω2τ 2
D

. (4.11)

The latter are proportional to the quantities Pw(ξ, ω) and Qw(ξ, ω) defined in equations (4.4)
and (4.9). The real and imaginary part are related by Kramers–Kronig relations, but this is not
true of their nonlinear counterparts P(ξ, ω) and Q(ξ, ω). The breakdown of these relations can
be shown explicitly from the response to third order in the field strength ξ . This corresponds
to the cubic term in the susceptibility. Since the cubic term is given incorrectly by Raikher and
Stepanov [3], and the expression derived by Coffey and Paranjape [2] is quoted incorrectly by
Déjardin et al [7, 9], we give the result explicitly

P(ξ, ω) + iQ(ξ, ω) = πξ2

3

[
1

1 − iωτD
− ξ2

60

1

1 + ω2τ 2
D

1

1 − iωτD

9 − iωτD

3 − 2iωτD
+ O(ξ4)

]
. (4.12)

It is evident that the second term has a pole in the complex ω-plane at i/τD in conflict with the
Kramers–Kronig relations. To elucidate the state of affairs we note the relation

P(ξ, ω) + iQ(ξ, ω) = ξω

∫ 2π/ω

0
F(t)eiωt dt for ω > 0. (4.13)
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Here F(t) itself depends on ω, unlike the usual situation where F(t) is an ω-independent
response function, and the integral runs to infinity.

To conclude this section we note that the fundamental of the magnetization can be
expressed as

F1(t) = 1

πξ
[P(ξ, ω) cos ωt + Q(ξ, ω) sin ωt]. (4.14)

This can be rewritten as

F1(t) = η(ξ, ω) cos(ωt − φ(ξ, ω)) (4.15)

with spectral amplification η(ξ, ω) given by

η(ξ, ω) =
√

P(ξ, ω)2 + Q(ξ, ω)2/(πξ) (4.16)

and loss angle φ(ξ, ω) by

φ(ξ, ω) = arctan
Q(ξ, ω)

P(ξ, ω)
. (4.17)

It may be most convenient to find P(ξ, ω), Q(ξ, ω) from experimentally determined values of
η(ξ, ω) and φ(ξ, ω).

5. Absorption and dissipation

In this section we discuss the relation between absorption, defined as work done on the system
by the oscillating field during a period, and dissipation, defined as the entropy produced due
to irreversible processes occurring in the system. In order to explore the relationship we must
consider the free energy and entropy of non-equilibrium states. We can associate an entropy
per particle with the non-equilibrium distribution f (θ, t) according to Boltzmann’s expression

S(t) = −k
∫ π

0
f (θ, t) ln f (θ, t) sin θ dθ, (5.1)

where k is Boltzmann’s constant. The corresponding free energy per particle is

F = U − T0S, (5.2)

where U is the mean potential energy

U(t) =
∫ π

0
ε(θ, t) f (θ, t) sin θ dθ (5.3)

and T0 = 1/kβ is the temperature of the heat bath with which the particles interact
stochastically. Thus the free energy is a functional F[ f ] of the distribution function. The
rate of change of the free energy is

dF
dt

=
∫ π

0
[ε(θ, t) + kT0 ln f ]

∂ f

∂ t
sin θ dθ +

∫ π

0

∂ε

∂ t
f sin θ dθ. (5.4)

Substituting equation (2.4) and performing an integration by parts we transform this to

dF
dt

= −kT0 DR

∫ 1

−1
(1 − x2)

[
∂ ln f

∂x
− ξ cos ωt

]2

f (x, t) dx − m F(t)
dH

dt
. (5.5)

Integrating this expression over a period we find for the periodic solution of equation (2.5) the
relation

D(ξ, ω) = Q(ξ, ω), (5.6)
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where D(ξ, ω) is the dissipation defined by

D(ξ, ω) = DR

∫ 1

−1

∫ T

0
(1 − x2)

[
∂ ln f

∂x
− ξ cos ωt

]2

f (x, t) dx dt . (5.7)

Clearly the integrand is positive in the whole xt-rectangle. Hence the dissipation is positive.
The relation (5.6) shows that the dissipation is calculated conveniently from the absorption,
i.e. from the work done on the system.

For a distribution of the exponential form of equation (3.11), a so-called e-distribution,
the free energy becomes a functional Fe[F] of the magnetization F , or alternatively of the
effective field ξe related to F by equation (3.12). By substitution of equation (3.11) into (5.1)
one finds for the corresponding entropy

Se(F) = k ln Z(ξe) − kξe F. (5.8)

Hence the free energy is

βFe(F, t) = (ξe − ξ cos ωt)F − ln Z(ξe). (5.9)

We see by use of the relation

F = ∂ ln Z(ξe)

∂ξe
, (5.10)

equivalent to equation (3.12), that ξe is the thermodynamic force conjugate to F

ξe = −1

k

∂Se(F)

∂ F
. (5.11)

The entropy Se(F) is an even function of the magnetization, Se(−F) = Se(F), and
Se(0) = k ln 2. From equations (5.9) and (5.10) we find

ξe − ξ cos ωt = ∂βFe

∂ F
. (5.12)

If at time t the distribution has the exponential form assumed in equation (3.11), then the
rate of change of the magnetization at that time is

dF

dt

∣∣∣∣
e

=
∫ 1

−1
x
∂ fe

∂ t
dx . (5.13)

Substituting from equation (2.5) one finds

dF

dt

∣∣∣∣
e

= DR(ξ cos ωt − ξe)〈sin2 θ〉ξe . (5.14)

By use of equation (5.12) we can write

dF

dt

∣∣∣∣
e

= −γ (F)β
∂Fe

∂ F
(5.15)

with the Onsager coefficient

γ (F) = DR〈sin2 θ〉ξe(F). (5.16)

One obtains the macroscopic relaxation equation (3.13) by postulating that

dFM

dt
= −γ (FM )β

∂Fe

∂ FM
(5.17)

holds at all times. The rate coefficient can be expressed alternatively as

γ (FM ) = 2DR
L(ξeM )

ξeM
. (5.18)
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The coefficient is always positive, but vanishes in the limit FM → ±1. At FM = 0 it takes the
maximum value γ (0) = 2

3 DR .
Multiplying equation (5.17) by ξ cos ωt − ξeM(t) and integrating over a period we obtain

by use of equation (5.12)∫ T

0
(ξ cos ωt − ξeM (t))

dFM

dt
dt =

∫ T

0
γ (FM )

(
β

∂Fe

∂ FM

)2

dt . (5.19)

The left-hand side of this equation can be simplified to QM (ξ, ω) by use of equation (5.11),
so that the equation can be expressed as

QM (ξ, ω) = DM(ξ, ω) (5.20)

with the macroscopic dissipation

DM (ξ, ω) =
∫ T

0
γ (FM )

(
β

∂Fe

∂ FM

)2

dt . (5.21)

The dissipation can be calculated from the absorption by use of equation (5.20). It is evident
that DM (ξ, ω) provides a macroscopic approximation to the actual dissipation D(ξ, ω), given
by equation (5.7).

6. The Shliomis relaxation equation

In the preceding sections we have compared the first-harmonic response and absorption
calculated from the Smoluchowski rotational diffusion equation with that found from the
approximate macroscopic equation proposed by Martsenyuk et al [10]. The macroscopic
equation leads to quite good agreement with the results found from the exact solution of the
Smoluchowski equation. It should be stressed that the exact calculation is actually simpler to
perform than the one based on the approximate equation.

It is also worthwhile to make a comparison with a second macroscopic equation, that
proposed by Shliomis [11]. In our notation the Shliomis equation reads for the situation
studied here

dFS

dt
= −2DR[FS(t) − L(ξ cos ωt)]. (6.1)

Rosensweig [12] has calculated the first-harmonic response and absorption on the basis of the
Shliomis equation, but his calculation involved an approximation.

The absorption calculated from equation (6.1) according to the definition equation (4.7)
is given by

QS(ξ, ω) = −2DRξ

∫ T

0
[FS(t) − L(ξ cos ωt)] cos ωt dt . (6.2)

By comparison with equation (4.1) we find the relation with the first-harmonic response

PS(ξ, ω) + 1
2ωτR QS(ξ, ω) = P(ξ, 0), (6.3)

with P(ξ, 0) given by equation (4.6). In particular at zero frequency

PS(ξ, 0) = P(ξ, 0). (6.4)

Rosensweig [12] finds instead for the right-hand side the value πξ L(ξ). We compare both
functions by considering their series expansion in powers of ξ2. The function πξ L(ξ) has the
expansion

πξ L(ξ) = π

∞∑
n=1

22n B2n

(2n)!
ξ2n, (6.5)
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where {Bn} are the Bernoulli numbers. The function P(ξ, 0) has the expansion

P(ξ, 0) = 2π

∞∑
n=1

B2n

(n!)2
ξ2n . (6.6)

This shows that the two expansions agree only in the first term. In figure 6 we compare the
functions 3P(ξ, 0)/πξ2 and 3L(ξ)/ξ . Both functions equal unity at ξ = 0.

The function L(ξ cos ωt) occurring in equation (6.1) can be expanded in harmonics as

L(ξ cos ωt) =
∞∑

n=0

pn(ξ) cos(2n + 1)ωt (6.7)

with first coefficient

p0(ξ) = P(ξ, 0)

πξ
. (6.8)

The periodic solution of equation (6.1) can be expressed as

FS(t) =
∞∑

n=0

an cos(2n + 1)ωt +
∞∑

n=0

bn sin(2n + 1)ωt . (6.9)

Substituting into equation (6.1), one finds that the coefficients {an, bn} are given by

an(ξ, ω) = 1

1 + (2n + 1)2ω2τ 2
D

pn(ξ), bn(ξ, ω) = (2n + 1)ωτD

1 + (2n + 1)2ω2τ 2
D

pn(ξ). (6.10)

Rosensweig missed the higher harmonics. From equation (6.10) one finds

PS(ξ, ω) = 1

1 + ω2τ 2
D

P(ξ, 0), QS(ξ, ω) = ωτD

1 + ω2τ 2
D

P(ξ, 0). (6.11)

Equation (6.3) is clearly satisfied. The reduced functions PS(ξ, ω)/P(ξ, 0) and
QS(ξ, ω)/P(ξ, 0) are independent of ξ , and identical with

χ ′(ω)

χ ′(0)
= 1

1 + ω2τ 2
D

,
χ ′′(ω)

χ ′(0)
= ωτD

1 + ω2τ 2
D

. (6.12)

The frequency dependence is the same as that found by Rosensweig. The resonance in the
reduced functions is not shifted from the weak-field case. We have shown above that the
Smoluchowski equation and the macroscopic equation of Martsenyuk et al [10] predict a
strong shift with increasing field.

At low and high frequencies the Shliomis relaxation equation yields results for the
magnetization in agreement with those found from the Smoluchowski equation. At
intermediate frequencies there are appreciable deviations. As argued elsewhere [26], the
Smoluchowski equation is reliable only in the dilute regime. For dense suspensions the
microscopic description is difficult, and it becomes worthwhile to explore the consequences
of various macroscopic relaxation equations.

7. Interacting dipoles in a spherical sample

Our study of the Smoluchowski equation applies to a dilute system of dipoles in which
interactions can be neglected. The same calculation can be applied to a system of interacting
dipoles distributed uniformly in a spherical container, provided that correlations between
dipoles are neglected and the average local field acting on a dipole is approximated by
the Lorentz local field. On the basis of these assumptions we find that the single-particle
distribution is given by the same expression as before.
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The neglect of correlations between dipoles implies that the statistical behaviour of the
system is described by the single-particle distribution function. We consider a spherical sample
placed in a uniform applied oscillating field H0(t) = H0ez cos ωt . The field induces a
magnetization M(t) and a Maxwell field H(t), which are uniform throughout the sample.
It follows from Maxwell’s equations of magnetostatics that the Maxwell field inside the sphere
is given by

H(t) = H0ez cos ωt − 4π

3
M(t)ez , (7.1)

where the last term is the demagnetizing field, in Gaussian units. The distribution function will
have cylindrical symmetry. Quite generally it can be assumed to satisfy the equation [27, 28]

∂ f

∂ t
= DR

[
1

sin θ

∂

∂θ

(
sin θ

∂ f

∂θ
+ ξloc(t) sin2 θ f

)]
, (7.2)

where ξloc(t) = m Hloc(t)/kT0 is the acting field in dimensionless units. By our assumption
of statistical independence of dipoles the local field Hloc(t) can be expressed in terms of the
single-particle distribution function. We make the further assumption that the local field can
be approximated by the Lorentz local field HL (t) given by

HL (t) = H(t) +
4π

3
M(t). (7.3)

Substituting from equation (7.1) we see that for a spherical sample the Lorentz field HL(t)
is identical with the applied field H0(t). Hence, with this approximation for the local field,
equation (7.2) reduces to equation (2.4), and all our earlier results apply.

We note that upon decomposition into harmonics we can express equation (7.1) as

Hn = H0δn1 − 4π

3
Mn (n � 1). (7.4)

Defining the complex response function

X (H, ω) = 1

πξ
[P(ξ, ω) + iQ(ξ, ω)] (7.5)

with ξ = m H/kT as before, we find in the Lorentz local field approximation

M1 = nm X

(
H1 +

4π

3
M1, ω

)
. (7.6)

This is an implicit equation for M1 in terms of H1, which has been called [29] the nonlinear
Clausius–Mossotti relation. It is a nonlinear constitutive equation expressing the local
magnetization at frequency ω in terms of the local Maxwell field at frequency ω. Note that the
higher harmonics of the Maxwell field have no effect, since they cancel in the Lorentz field on
account of equation (7.4).

Although we have derived equation (7.6) for a particular choice of geometry, the equation
is expressed in terms of local quantities. It is therefore tempting to use it in combination with
Maxwell’s equations to predict the macroscopic response of a sample of any shape to a uniform
applied oscillating field. In the first instance the calculation involves only the behaviour of the
first harmonic. As a result one finds the fundamental of the magnetization and of the magnetic
field at any point in space. However, the local distribution function also generates higher
harmonics of the magnetization, as shown in equation (2.14), and therefore via Maxwell’s
equations higher harmonics of the field. For spherical geometry these have no effect, because
of equations (7.3) and (7.4), but for different geometries they must in principle be taken into
account. For a sharp resonance the higher harmonics can reasonably be neglected [29], but
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in the present situation more care is needed. A general study of the effect of many-particle
interactions on the nonlinear response has been presented by Palenberg and Felderhof [30] in
the framework of a cluster expansion.

The identification of the Lorentz local field with the applied field holds only for a spherical
sample. In ellipsoidal or cylindrical geometry the Maxwell field and the magnetization are
again uniform, but the Lorentz local field differs from the applied field. Therefore in an applied
field with cos ωt dependence the behaviour of the magnetization will depend on the shape of
the sample. Only for a spherical sample do we have a prediction of the time dependence of
the magnetization. The latter can be used to test the validity of the theoretical assumptions in
experiment or computer simulation. In computer simulation it is not necessary to use a finite
sample shape. One can employ periodic boundary conditions and mimic the sample shape by
the choice of periodic Green function [31].

8. Discussion

We have studied the nonlinear response of a dipolar system to a strong oscillating field, both
on the basis of the microscopic rotational diffusion equation, and on the basis of the Shliomis
macroscopic relaxation equation. The predictions of the two equations differ markedly. We
have also compared these predictions with the response calculated from the macroscopic
relaxation equation of Martsenyuk et al, derived from the rotational diffusion equation on
the basis of an effective field approximation. We found that the approximation performs quite
well in its prediction for the behaviour of the magnetization, even though the assumed form
of the distribution function at times differs strongly from the exact value. On the other hand,
its use in the present context is rather superfluous, since the calculation on the basis of the
rotational diffusion equation, once the coupled set of equations (2.8) and (2.10) has been
derived, is actually simpler than the solution of the approximate equation.

The nonlinear response calculated from the rotational diffusion equation shows quite
interesting features. Firstly, the absorption resonance is considerably shifted and broadened in
comparison with the linear response. This feature may be relevant in technical applications.
Secondly, it is found that the real and imaginary part of the complex nonlinear response do
not satisfy Kramers–Kronig relations. Thus in experimental investigations both parts must be
determined separately.

The theory can be extended in several directions. First of all, it would be desirable to
perform a similar calculation for a rotating field [32] and for an oscillating field with elliptic
polarization. Secondly it would be desirable to extend the calculation to interacting dipoles in
cylindrical geometry with an oscillating field directed along the axis of the cylinder. This is of
relevance for the calculation of the so-called negative viscosity effect [33–35].
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